The research on chinese text multi-label classification
Institution:
Lyon 2Disciplines:
Directors:
Abstract EN:
La thèse est centrée sur la Classification de texte, domaine en pleine expansion, avec de nombreuses applications actuelles et potentielles. Les apports principaux de la thèse portent sur deux points : Les spécificités du codage et du traitement automatique de la langue chinoise : mots pouvant être composés de un, deux ou trois caractères ; absence de séparation typographique entre les mots ; grand nombre d’ordres possibles entre les mots d’une phrase ; tout ceci aboutissant à des problèmes difficiles d’ambiguïté. La solution du codage en «n-grams »(suite de n=1, ou 2 ou 3 caractères) est particulièrement adaptée à la langue chinoise, car elle est rapide et ne nécessite pas les étapes préalables de reconnaissance des mots à l’aide d’un dictionnaire, ni leur séparation. La classification multi-labels, c'est-à-dire quand chaque individus peut être affecté à une ou plusieurs classes. Dans le cas des textes, on cherche des classes qui correspondent à des thèmes (topics) ; un même texte pouvant être rattaché à un ou plusieurs thème. Cette approche multilabel est plus générale : un même patient peut être atteint de plusieurs pathologies ; une même entreprise peut être active dans plusieurs secteurs industriels ou de services. La thèse analyse ces problèmes et tente de leur apporter des solutions, d’abord pour les classifieurs unilabels, puis multi-labels. Parmi les difficultés, la définition des variables caractérisant les textes, leur grand nombre, le traitement des tableaux creux (beaucoup de zéros dans la matrice croisant les textes et les descripteurs), et les performances relativement mauvaises des classifieurs multi-classes habituels.
Abstract FR:
Text Classification (TC) which is an important field in information technology has many valuable applications. When facing the sea of information resources, the objects of TC are more complicated and diversity. The researches in pursuit of effective and practical TC technology are fairly challenging. More and more researchers regard that multi-label TC is more suited for many applications. This thesis analyses the difficulties and problems in multi-label TC and Chinese text representation based on a mass of algorithms for single-label TC and multi-label TC. Aiming at high dimensionality in feature space, sparse distribution in text representation and poor performance of multi-label classifier, this thesis will bring forward corresponding algorithms from different angles.Focusing on the problem of dimensionality “disaster” when Chinese texts are represented by using n-grams, two-step feature selection algorithm is constructed. The method combines filtering rare features within class and selecting discriminative features across classes. Moreover, the proper value of “n”, the strategy of feature weight and the correlation among features are discussed based on variety of experiments. Some useful conclusions are contributed to the research of n-gram representation in Chinese texts.In a view of the disadvantage in Latent Dirichlet Allocation (LDA) model, that is, arbitrarily revising the variable in smooth process, a new strategy for smoothing based on Tolerance Rough Set (TRS) is put forward. It constructs tolerant class in global vocabulary database firstly and then assigns value for out-of-vocabulary (oov) word in each class according to tolerant class.In order to improve performance of multi-label classifier and degrade computing complexity, a new TC method based on LDA model is applied for Chinese text representation. It extracts topics statistically from texts and then texts are represented by using the topic vector. It shows competitive performance both in English and in Chinese corpus.To enhance the performance of classifiers in multi-label TC, a compound classification framework is raised. It partitions the text space by computing the upper approximation and lower approximation. This algorithm decomposes a multi-label TC problem into several single-label TCs and several multi-label TCs which have less labels than original problem. That is, an unknown text should be classified by single-label classifier when it is partitioned into lower approximation space of some class. Otherwise, it should be classified by corresponding multi-label classifier.An application system TJ-MLWC (Tongji Multi-label Web Classifier) was designed. It could call the result from Search Engines directly and classify these results real-time using improved Naïve Bayes classifier. This makes the browse process more conveniently for users. Users could locate the texts interested immediately according to the class information given by TJ-MLWC.