Développement de méthodes de volumes finis pour la mécanique des fluides
Institution:
Toulouse 3Disciplines:
Directors:
Abstract EN:
Pas de résumé disponible.
Abstract FR:
Le but de cette thèse est de développer une méthode de volumes finis qui s'applique à une classe de maillages beaucoup plus grande que celle des méthodes classiques, limitées par des conditions d'orthogonalité très restrictives. On construit des opérateurs différentiels discrets agissant sur les trois maillages décalés, nécessaires à la construction de la méthode. Ces opérateurs vérifient des propriétés discrètes analogues à celles des opérateurs continus. La méthode est tout d'abord appliquées au problème Divergence-Rotationnel qui peut être considéré comme une brique du problème de Stokes. Ensuite, le problème de Stokes est traité avec diverses conditions aux limites. Par ailleurs, il est bien connu que lorsque le domaine est polygonal et non-convexe, l'ordre de convergence des méthodes numériques se dégrade. Par conséquent, nous avons étudié dans quelle mesure un raffinement local approprié restaure l'ordre de convergence optimal pour le problème de Laplace. Enfin, nous avons discrétisé le problème non-linéaire de Navier-Stokes, en utilisant la formulation rotationnelle du terme de convection, associé à la pression de Bernoulli. Par un algorithme itératif, nous sommes amené à résoudre un problème de point--selle à chaque itération, pour lequel nous testons quelques préconditionneurs issus des éléments finis, que l'on adapte à notre méthode. Chaque problème est illustré par des cas tests numériques sur des maillages arbitraires, tels que des maillages fortement non-conformes.