thesis

Analyse en composantes indépendantes par ondelettes

Defense date:

Jan. 1, 2006

Edit

Institution:

Paris 7

Disciplines:

Directors:

Abstract EN:

Pas de résumé disponible.

Abstract FR:

L'analyse en composantes indépendantes (ACI) est une forme d'analyse multivariée qui a émergé en tant que concept dans les années 1980-90. C'est un type de problème inverse où on observe une variable X dont les composantes sont les mélanges linéaires d'une variable S inobservable. Les composantes de S sont mutuellement indépendantes. La relation entre les deux variables s'exprime par X=AS, où A est une matrice de mixage inconnue. Le problème principal de l'ACI est d'estimer la matrice A, à partir de l'observation d'un échantillon i. I. D. De X, pour atteindre S qui constitue un système explicatif meilleur que X dans l'étude d'un phénomène particulier. Le problème se résout généralement par la minimisation d'un certain critère, issu d'une mesure de dépendance. L'approche qui est proposée dans cette thèse est du type non paramétrique. Sous des hypothèses de type Besov, on étudie plusieurs estimateurs d'un critère de dépendance exact donné par la norme L2 de la différence entre une densité et le produit de ses marges. Ce critère constitue une alternative à l'information mutuelle qui représentait jusqu'ici le critère exact de référence de la plupart des méthodes ACI. On donne une majoration de l'erreur en moyenne quadratique de différents estimateurs du contraste L2. Cette majoration prend en compte le biais d'approximation entre le Besov et l'espace de projection qui, ici, est issu d'une analyse multirésolution (AMR) générée par le produit tensoriel d'ondelettes de Daubechies. Ce type de majoration avec prise en compte du biais d'approximation est en général absent des méthodes non paramétriques récentes en AGI (méthodes kernel, information mutuelle).