thesis

Classification et détection de figures chartistes par apprentissage statistique

Defense date:

Jan. 1, 2013

Edit

Institution:

Paris 6

Disciplines:

Authors:

Directors:

Abstract EN:

Cette thèse porte sur l'analyse de cours financiers et plus particulièrement sur la reconnaissance de figures chartistes qui sont des motifs possédant un potentiel prédictif. Bien que leur définition obéisse à des règles théoriques précises, leur détection pose problème. L’écart entre la théorie et la pratique est importante ; les figures réelles ne respectent pas parfaitement les règles théoriques. La définition des figures semble subjective et dépendre de l’expert financier. Enfin il n’existe pas de corpus de données étiquetées. Nous avons étudié la classification et la détection de ces figures à l’aide de systèmes statistiques markoviens génératifs (HMMs) et discriminants (CRFs et Hidden CRFs) qui sont des technologies de référence pour le traitement de séquences. Nous avons proposé plusieurs stratégies pour apprendre de façon robuste ces systèmes avec peu de données étiquetées. La première est une hybridation des HMMs et des HCRFs reposant sur l’idée d’exploiter les capacités de modélisation des HMMs afin de limiter le sur-apprentissage des modèles discriminants (HCRFs). La seconde est une approche semi-supervisée qui emprunte au co-training l’idée de l’apprentissage conjoint de deux systèmes, l’un génératif, l’autre discriminant. Afin de concevoir des systèmes de détection performants et adaptés à chaque expert, nous avons conçu un système à deux niveaux dans lequel des motifs d'un cours sont pré-sélectionnés par des HMMs puis confirmés ou infirmés par une SVM opérant sur une description enrichie des motifs. Le modèle SVM est appris par une stratégie d’apprentissage actif pour personnaliser le système à un expert particulier.

Abstract FR:

This thesis deals with financial stock market analysis and is especially focused on chart pattern recognition. A chart pattern is a particular shape which has a predictive power; it is defined by theoretical rules. Detecting such patterns is difficult. There is an important gap between theory and practice; real patterns do not perfectly respect the theoretical rules. Moreover, chart patterns definition seems subjective; it depends on the financial expert. Finally, there is no large labeled datasets of chart patterns. We study classification and detection of chart patterns using statistical markovian systems. We focus on generative (Hidden Markov Models) and discriminative (Conditional Random Fields, Hidden CRFs) approaches which are standard technologies for sequential data recognition. We propose various strategies to learn accurate systems with small training sets. The first one blends HMMs and HCRFs in such a way that the modeling ability of the generative models is used to limit the overfitting of the discriminative ones. The second strategy, is a semi-supervised approach which learns jointly a HMM and a HCRF systems; it has some similarity with the well-known co-training algorithm. To design an accurate detection system dedicated to a particular financial expert, we propose a two level system where candidate patterns are first extracted from the financial stock-market using HMMs, and then they are confirmed as chart patterns or rejected by a SVM which uses an enriched representation of patterns. While the HMM system is learn once for every expert, the SVM level is trained with an active learning strategy to take into account the expert’s own detection criteria.