thesis

A Runtime System for Data-Flow Task Programming on Multicore Architectures with Accelerators

Defense date:

May 5, 2014

Edit

Institution:

Grenoble

Disciplines:

Abstract EN:

In this thesis, we propose to study the issues of task parallelism with data dependencies onmulticore architectures with accelerators. We target those architectures with the XKaapiruntime system developed by the MOAIS team (INRIA Rhône-Alpes).We first studied the issues on multi-GPU architectures for asynchronous execution andscheduling. Work stealing with heuristics showed significant performance results, but didnot consider the computing power of different resources. Next, we designed a schedulingframework and a performance model to support scheduling strategies over XKaapi runtime.Finally, we performed experimental evaluations over the Intel Xeon Phi coprocessor innative execution.Our conclusion is twofold. First we concluded that data-flow task programming canbe efficient on accelerators, which may be GPUs or Intel Xeon Phi coprocessors. Second,the runtime support of different scheduling strategies is essential. Cost models providesignificant performance results over very regular computations, while work stealing canreact to imbalances at runtime.

Abstract FR:

Dans cette thèse , nous proposons d’étudier des questions sur le parallélism de tâcheavec dépendance de données dans le cadre de machines multicoeur avec des accélérateurs.La solution proposée a été développée en utilisant l’interface de programmation hauteniveau XKaapi du projet MOAIS de l’INRIA Rhône-Alpes.D’abord nous avons étudié des questions liés à une approche d’exécution totalementasyncrone et l’ordonnancement par vol de travail sur des architectures multi-GPU. Le volde travail avec localité de données a montré des résultats significatifs, mais il ne prend pasen compte des différents ressources de calcul. Ensuite nous avons conçu une interface etune modèle de coût qui permettent d’écrire des politiques d’ordonnancement sur XKaapi.Finalement on a évalué XKaapi sur un coprocesseur Intel Xeon Phi en mode natif.Notre conclusion est double. D’abord nous avons montré que le modèle de programma-tion data-flow peut être efficace sur des accélérateurs tels que des GPUs ou des coproces-seurs Intel Xeon Phi. Ensuite, le support à des différents politiques d’ordonnancement estindispensable. Les modèles de coût permettent d’obtenir de performance significatifs surdes calculs très réguliers, tandis que le vol de travail permet de redistribuer la charge encours d’exécution.