Nanostructured soft-hard magnetic materials with controlled architecture
Institution:
Le MansDisciplines:
Directors:
Abstract EN:
Among currently investigated rare-earth-free magnets, ferromagnetic τ-MnAl is a highly potential candidate as having promising intrinsic magnetic properties. In my thesis, Mn(Fe)AlC was synthesized by mechanical alloying method. Effects of carbon on microstructure and magnetic properties were systematically investigated. It was found that high purity of τ-MnAl(C) could be obtained at 2 at.% C doping, showing clearly stabilizing effect of carbon. Mn54.2Al43.8C2 has the best magnetic properties: magnetization at 2T M2T = 414 kAm-1, remanent magnetization Mr = 237 kAm-1, coercivity HC = 229 kAm-1, and |BH|max = 11.2 kJm-3. HC increased inversely with the crystallite size of τ phase and proportionally with C content. Moreover, first principle calculation showed both stabilizing effect and preferable interstitial positions of carbon in tetragonal τ-MnAl. Mn51-xFexAl47C2 (x= 0.25, 0.5, 1, 2, 4, 6) alloys were also synthesized by mechanical alloying method, showing high purity of τ phase up to 2 at.% Fe doping. Adding of Fe on MnAl(C) reduced both magnetization and TC but likely increased slightly HC. 57Fe Mössbauer spectrometry at 300K was used to probe local enviroment in ε-, τ-, β-, and γ2-MnFeAl(C). In which, γ2-, ε-, and β-MnFeAl(C) exhibited a quadrupolar structure while τ -Mn50.5Fe0.5Al47C2 spectrum showed a rather complex magnetic hyperfine splitting. The interaction between Fe and Mn examined by in-field Mössbauer measurement at 10 K and 8 T showed a non-collinear magnetic structure between Fe and Mn with different canting angles at different sites. Hyperfine field of MnFeAl alloy calculated by Win2k supported both magetic properties and Mossbauer results.
Abstract FR:
Parmi les aimants sans terres raresactuellement étudiés, τ-MnAl ferromagnétique est uncandidat à haut potentiel, car il possède despropriétés magnétiques intrinsèques prometteuses.Dans cette thèse, Mn(Fe)AlC a été synthétisé parbroyage mécanique. Les effets du carbone sur lamicrostructure et les propriétés magnétiques ont étéétudiés. Les résultats montrent qu’une pureté élevéede τ-MnAl(C) pouvait être obtenue avec un dopage à2% en atomes de carbone, montrant clairement l’effetstabilisant du carbone. L’alliage Mn54.2Al43.8C2possède les meilleures propriétés magnétiques :aimantation à 2T M2T = 414 kAm-1, aimantationrémanente Mr = 237 kAm-1, coercivité HC = 229 kAm-1et |BH|max = 11,2 kJm-3. HC augmente inversementproportionnellement avec la taille des cristallites de laphase τ et proportionnellement à la teneur en C. Descalculs ab initio confirment l’effet stabilisant etindiquent les positions interstitielles préférentielles ducarbone dans la maille quadratique de la phase τ-MnAl.Les alliages Mn51-xFexAl47C2 (x = 0,25, 0,5, 1, 2, 4, 6)ont également été synthétisés par broyagemécanique, montrant une pureté élevée de la phaseτ jusqu'à un taux de substitution de 2% du Mn par duFe. L'ajout de Fe dans MnAl(C) réduit l'aimantationet TC, mais augmente légèrement la valeur de HC. Laspectrométrie 57Fe Mössbauer à 300K a été utiliséepour sonder l'environnement local dans ε-, τ-, β- etγ2-MnFeAl(C). γ2-, ε- et β-MnFeAl(C) présentent unestructure hyperfine quadripolaire alors que τ-Mn50.5Fe0.5Al47C2 montre une structutr hyperfinemagnétique assez complexe. Une expérience despectrométrie Mössbauer effectuée à bassetempérature (10K) et sous champ magnétique (8T)montre un ordre ferromagnétique local non colinéairedes moments magnétiques de Fer par rapport à ladirection du champ appliqué. Le champ hyperfin del’alliage MnFeAl calculé par Wien2k confirme lespropriétés magnétiques et les résultats despectrométrie Mössbauer.