Apprentissage génétique de règles de reconnaissance visuelle : application à la reconnaissance d'éléments du visage
Institution:
Grenoble INPGDisciplines:
Directors:
Abstract EN:
Pas de résumé disponible.
Abstract FR:
Depuis quelques annees, un interet croissant est constate dans l'utilisation de techniques d'apprentissage automatique en vision par ordinateur et domaines voisins. Cependant, toutes les possibilites sont loin d'etre suffisamment exploitees. Dans cette perspective, l'objectif de cette these est l'apprentissage automatique de modeles d'objets pour la reconnaissance visuelle dans le cadre de la vision par apparence. Les modeles sont representes par un ensemble de regles en logique floue. Une regle est un ensemble de caracteristiques locales combinees par les operateurs usuels de la logique floue (et, ou et non). Les caracteristiques sont representees par des masques de convolution. L'apprentissage procede par induction sur un ensemble d'exemples, de facon supervisee et incrementale. Des methodes d'apprentissage genetique sont utilisees a deux niveaux : un algorithme genetique fait evoluer des caracteristiques, et une methode de type programmation genetique emploie ces caracteristiques dans la construction de regles de reconnaissance. La methode proposee peut etre utilisee pour apprendre des modeles afin de detecter un objet dans une image ou dans une sequence d'images, ou afin de classifier l'image d'un objet. Nous presentons des resultats d'experimentation avec le prototype d'un tel systeme pour deux taches differentes : classification d'elements du visage humain - il droit, il gauche, bouche, nez ; et detection des yeux. Ce prototype est actuellement integre dans un programme de suivi de visage utilise dans un systeme d'interaction homme machine.