thesis

Electrically driven semiconductor devices operating in the light-matter strong coupling regime

Defense date:

Jan. 1, 2007

Edit

Institution:

Paris 7

Authors:

Directors:

Abstract EN:

This thesis is focused on the study of the light-matter strong coupling regime for intersubband transitions. A System composed of doped multi-quantum wells inserted in a semiconductor planar microcavity allows the study of the interaction between intersubband excitations and photon cavity modes. If the vacuum Rabi frequency, quantifying the coupling between a cavity photon and an intersubband excitation, exceeds their frequency broadenings, what is referred to as strong coupling regime is achieved. In this regime, the eigenstates of the System are linear superpositions of light and matter excitations and are called cavity polaritons. In this thesis the implementation of the light-matter strong coupling regime in an electrically driven semiconductor device is presented. The structure we have designed is composed of a AI0,45Ga0, 55As/GaAs quantum cascade structure containing a bi-dimensional electron gas in the ground state, inserted in a planar microcavity, based on a plasmon mode, suitable for electrical injection. The System has been first characterized in reflectivity, showing its suitability for the achievement of the light-matter strong coupling regime. Then, photovoltaic and electro-luminescence measurements have been performed. The results obtained have put into evidence the importance of the electrical transport and injection in the properties of the System in strong coupling regime. The possibility of an electrical probe of cavity dynamics has been demonstrated, as well as the realization of the first electrically injected semiconductor device, working in the light-matter strong coupling regime in emission.

Abstract FR:

Cette thèse porte sur l'étude du couplage fort lumière-matière pour les transitions intersousbandes. En plaçant une série de puits quantiques dopés dans une microcavité planaire à semiconducteur, les interactions entre excitations intersousbandes et modes photoniques de cavité peuvent être étudiés. Si la fréquence de Rabi, liée à la force du couplage entre photons de cavité et excitations intersousbandes, est supérieure à leur élargissement en fréquence, le régime de couplage fort est atteint. Dans ce régime, les états propres du système sont des superpositions linéaires d'excitations photoniques et électroniques, appelés polaritons de cavité. Dans ce travail, nous démontrons l'implémentation du régime de couplage fort lumière-matière dans un dispositif électrique à semiconducteur. La structure que nous avons réalisée est composée par une structure à cascade quantique en AI0,45Ga0,55As/GaAs contenant un gaz bi-dimensionel d'électrons dans l'état fondamental. Elle est insérée dans une microcavité planaire, basée sur un mode plasmonique et dans laquelle un courant peut être injecté. Le système a été caractérisé d'abord en réflectivité, démontrant que le régime de couplage fort lumière-matière est atteint. Ensuite, des mesures photovoltaïques et d'électro-luminescence ont été effectuées. Les résultats obtenus soulignent l'importance du transport électronique et de l'injection électrique pour les propriétés du système en couplage fort. La possibilité de sonder électriquement des phénomènes de cavité a été démontrée, ainsi que la réalisation du premier dispositif sous pompage électrique, fonctionnant dans le régime de couplage fort lumière-matière en émission.