Ensemble de niveaux robustes au speckle et recalage B-spline : application à la segmentation et l'analyse du mouvement cardiaque par des images ultrasons
Institution:
Toulouse, INPTDisciplines:
Directors:
Abstract EN:
Analysing ultrasound images to estimate local motion of heart walls is widely used to diagnose cardiac malformations. Unfortunately, this modality produces images with a high level of speckle, causing erroneous detection of cavities. This thesis presents a method for estimating heart cavity motion in 2D images. We propose a new level set model to segment cardiac ultrasound images. This model is supported by a stopping term adapted to speckle. Instead of the classical gradient, our stopping term is based on the coeficient of variation. Morever, we improved the detection of contours of this function by adding a supervised clasification based on a Multilayer Perceptron. The obtained results show a significant increase of the precision. The motion estimation is done by means of an adaptative registration process consists of three phases. First, we estimate a linear transform using the ICP algorithm to remove the linear difference between the cavities. The second phase consists of calculating a global B-spline transformation. Finally, we perform a Hierarchical B-spline refinement in regions with unsatisfactory deviations. The experimentations show that our model allows a precise deformation of the heart walls.
Abstract FR:
L'analyse du mouvement local des parois du coeur dans des images ultrasonores est souvent utilisée pour diagnostiquer certaines malformations cardiaques. Malheureusement, cette modalité produit des images caractérisées par un niveau élevé de speckle, rendant difficile la détection des cavités. La thèse présente une méthode d'estimation du mouvement des cavités dans des images 2D. Nous proposons un nouveau modèle de level sets pour segmenter l'image. Ce modèle s'appuie sur une fonction d'arrêt adaptée au speckle. Celle-ci se démarque des fonctions habituelles en remplaçant le gradient par le coefficient de variation, une statistique robuste aux bruits multiplicatifs. De plus, nous renforçant cette fonction par un classificateur perceptron multicouche rendant plus fiable la détection de contours. Les résultats obtenus montrent un apport significatif en précision. L'estimation du mouvement se fait par un processus de recalage adaptatif qui calcule une B-spline hiérarchique. Cette méthode prend en entrée les courbes produites par la segmentation et estime la déformation en appliquant successivement l'algorithme ICP, une optimisation aux moindres carrés, et un raffinage hiérarchique. L'expérimentation montre que ce modèle aboutit à une approximation précise des déformations 2D des parois du coeur.