thesis

Comportement et rupture d'un alliage d'aluminium silicium, AS7G03 : application : modélisation du comportement dynamique de support moteur,simulation de crash test

Defense date:

Jan. 1, 1997

Edit

Abstract EN:

Pas de résumé disponible.

Abstract FR:

Le comportement dynamique de pièces de liaison entre les éléments mécaniques et la structure influe beaucoup sur le déroulement d'un choc (intrusion d'éléments dans l'habitacle, décélération au niveau des occupants). Afin d'optimiser les fonctions de ces pièces, on cherche à modéliser leur comportement lors d'un choc. L’élément qui nous intéresse relie la structure au groupe de moto-propulsion. Ces pièces, supports de moteur, sont de plus en plus souvent réalisées en alliages d'aluminium moulé. L’objectif de cette étude est la modélisation du comportement d'un support moteur sous sollicitation dynamique. Pour ce faire, il est nécessaire de bien connaitre le comportement et la rupture du matériau, l'AS7G03 qui est un alliage d'aluminium - silicium moulé. Nous avons examine l'influence de la composition chimique de l'alliage et notamment du fer sur le comportement du matériau. La structure de la pièce considérée étant complexe, les vitesses de refroidissement varient d'un point à l'autre. Il est donc important d'étudier l'influence de la vitesse de solidification sur la microstructure du matériau et donc sur ses propriétés mécaniques. En plus des paramètres de fabrication, nous avons étudié des paramètres mécaniques, à savoir l'effet des chargements multiaxiaux ainsi que l'effet de la vitesse de chargement. Pour connaitre l'influence de chargements multiaxiaux, nous avons réalisé des éprouvettes axisymétriques entaillées. Elles nous ont permis de déterminer que le critère de Rice et Tracey est bien adapté à la rupture de notre matériau. Nous avons étudié l'influence de la vitesse de sollicitation sur le comportement et la rupture du matériau en réalisant des essais à différentes vitesses, en particulier à l'aide du montage des barres de Hopkinton en compression et en traction. Un meilleur mode de dépouillement des essais dynamiques bases sur des calculs par éléments finis a été mis en place. De plus, l'instrumentation des éprouvettes axisymétriques entaillées a été améliorée. Des informations sur les mécanismes d'endommagement et de rupture ont été obtenues à l'aide de l'essai de traction de mini éprouvette dans l'enceinte d'un microscope électronique à balayage. L’endommagement débute avec la rupture des particules de silicium, il se poursuit par la croissance et par la coalescence de ces cavités. Il se crée des microfissures. L’ensemble de ces microfissures croient jusqu'a la jonction de plusieurs microfissures qui provoque la ruine de la matière. Cette dernière étape n'apparait pas dans le cheminement classique de la rupture ductile. Une technique pour tester les supports moteurs reproduisant au mieux le chargement de cette pièce lors d'un crash test véhicule a été mis au point. Nous avons ensuite modélisé par éléments finis cet essai en utilisant la loi de comportement et le critère de rupture de Rice et Tracey que nous avons déterminé avec les essais sur éprouvettes. Ce critère apporte une amélioration de la prédiction de rupture par rapport au critère de mises jusqu'alors utilise. Nous prédisons avec une bonne précision le comportement ainsi que la rupture (lieu et niveau d'effort) du support moteur.