Nanostructuration, reinforcement in the rubbery state and flow properties at high shear strain of thermoplastic elastomers : Experiments and modeling
Institution:
LyonDisciplines:
Directors:
Abstract EN:
Thermoplastic elastomers, made of segmented block copolymers forming phase-separated domains (hard/soft) are widely used in the industry for various applications (car dashboards, cable sheathing or even bitumen modifiers). However, the empirical approach often used consisting in modifying the chain composition and looking at the consequences on the final properties lacks of understanding and the structure-properties relationships remain elusive nowadays. The main objective of this thesis is to bring new insights on the following points. What are the effects of the chain architecture and processing conditions on the crystallization kinetics and resulting morphology? Can we explain the reinforcement effect in these materials from the knowledge of their particular structure? How does the flow-induced crystallization influence the rheological properties? To answer these questions, we propose to combine an experimental study, based on structural and rheological characterizations of multiblock copolymers (polybutylene terephthalate – polytetrahydrofuran), with a numerical approach consisting in the development of a coarse-grained model for molecular dynamic simulations. This work led to the following main results. First, it was shown that the multiphasic structure, resulting from a bimodal crystallization whose kinetics is essentially controlled by the soft segment’s length, highly depends on the processing conditions, leading to more ordered structures when the chain mobility is higher. Then, the topological analysis of the semicrystalline network enabled to identify two key parameters to predict the evolution of the plateau modulus: volume fraction and width of the crystallites. Finally, the evolution of the flow properties under flow-induced crystallization was described thanks to the elaboration of a rheological model based on the slowdown of the chains dynamics.
Abstract FR:
Les élastomères thermoplastiques, faits de copolymères à blocs segmentés formant des domaines mous et durs (cristallites) séparés sont largement utilisés dans l'industrie pour la production d’éléments divers (tableaux de bord, gaines de câbles ou encore adjuvants pour le bitume). Cependant, l’approche souvent très empirique consistant à modifier la composition de la chaîne et observer l’impact sur les propriétés finales laisse peu de place à la compréhension et à la généralisation de relations structure-propriétés qui restent encore mal comprises. L'objectif de cette thèse est d'apporter une meilleure compréhension des points suivants. Quels sont les effets de l'architecture de la chaîne et des conditions de procédé sur la cinétique de cristallisation et la morphologie résultante ? Peut-on expliquer l’origine du renforcement dans ces matériaux à partir de leur structure particulière ? Comment la cristallisation induite sous écoulement influence-t-elle les propriétés rhéologiques ? Pour répondre à ces questions, nous proposons de combiner l’étude expérimentale basée sur la caractérisation structurale et rhéologique de copolymères multiblocs (polybutylène téréphtalate – polytétrahydrofurane) avec une approche numérique passant par le développement d’un modèle gros-grains pour la simulation en dynamique moléculaire. Les travaux ainsi menés ont abouti aux résultats principaux suivants. Premièrement, il a été montré que la structure multiphasique, résultant d’une cristallisation bimodale dont la cinétique est essentiellement contrôlée par la longueur du segment mou, dépend fortement des conditions de mise en œuvre menant à des structures plus ordonnées lorsque la mobilité des chaînes est élevée. Ensuite, l’analyse de la topologie du réseau semicristallin a permis de mettre en avant deux paramètres pertinents permettant de prédire l’évolution du plateau caoutchoutique : la fraction volumique et la largeur des cristallites. Enfin, l'évolution des propriétés d’écoulement au cours de la cristallisation sous déformation a été décrite en élaborant un modèle rhéologique basé sur le ralentissement de la dynamique des chaînes.