Coupling of electron spectroscopies for high resolution elemental depth distribution profiles in complex architectures of functional materials
Institution:
Ecully, Ecole centrale de LyonDisciplines:
Directors:
Abstract EN:
This thesis tackles the challenge of probing in a non-destructive way deeply buried interfaces in multilayer stacks used in technologically-relevant devices with an innovative photoemission method based on Hard X-ray PhotoElectron Spectroscopy (HAXPES) and inelastic background analysis. In this thesis, a numerical procedure has been implemented to quantify the matching between a HAXPES measured inelastic background and a simulated inelastic background that is representative of a given depth distribution of the chemical elements. The method allows retrieving depth distributions at large depths via a semi-automated procedure. First, this method has been tested by studying an ultra-thin layer of lanthanum buried at depth >50 nm in a high-k metal gate sample. The influence of the parameters involved in the analysis is studied unraveling the primary importance of the inelastic scattering cross section. The combination of HAXPES with inelastic background analysis using this novel method maximizes the probing depth to an unprecedented level, allowing to probe the sample up to 65 nm below the surface with a high sensitivity to a nm-thick layer. Second, the previously-checked inelastic background analysis is combined with that of high resolution core-level spectra in the case of the source part of a high electron mobility transistor. The two analyses are complementary as they allow retrieving the elemental depth distribution and the chemical state, respectively. The result gives a complete picture of the elemental intermixing within the sample when it is annealed at various temperatures.
Abstract FR:
Ce travail de thèse est focalisé sur la détermination, de manière non-destructive, d'interfaces profondément enterrées dans des empilements multi-couches utilisés dans les conditions de technologie réelles au travers d'une méthode innovante basée sur la photoémission avec utilisation de rayons-x de haute énergie (HAXPES) et l'analyse du fond continu inélastique. Au cours de cette thèse, une procédure numérique a été développée pour quantifier la correspondance entre la mesure du fond continu faite par HAXPES et la simulation du fond continu représentative d'une distribution en profondeur donnée. Cette méthode permet de trouver la distribution en profondeur d'un élément grâce à une procédure semi automatisée. Dans un premier temps cette méthode a été testée en étudiant une couche ultra fine de lanthane enterrée à une profondeur >50 nm dans un dispositif de grille métallique high-k. L'influence des paramètres utilisés lors de l'analyse y est étudiée et révèle l'importance principale d'un paramètre en particulier, la section efficace de diffusion inélastique. La combinaison de mesures HAXPES avec l'analyse du fond continu inélastique utilisant cette nouvelle méthode permet d'augmenter la profondeur de sonde jusqu'à un niveau sans précédent. Ainsi l'échantillon peut être sondé jusqu'à 65 nm sous la surface avec une haute sensibilité à une couche nanométrique. Dans un second temps, la méthode précédemment validée d'analyse de fond continu inélastique est combinée avec une étude haute résolution des niveaux de cœur dans un échantillon servant de source dans un transistor à haute mobilité. Les deux analyses sont complémentaires puisqu'elles permettent d'obtenir la distribution en profondeur des éléments ainsi que leur environnement chimique. Le résultat donne une description complète des diffusions élémentaires dans l'échantillon suivant les différentes conditions de recuit.