Modélisation et apprentissage des préférences appliqués à la recommandation dans les systèmes d'impression
Institution:
Paris 6Disciplines:
Directors:
Abstract EN:
Pas de résumé disponible.
Abstract FR:
Cette thèse porte sur la modélisation et l'apprentissage automatique des préférences, dans le contexte industriel de l'impression en grand format. En particulier, nous nous intéressons à l'automatisation de la configuration d'impression. De par la palette des comportements possibles, cette fonctionnalité n'est triviale, ni à concevoir, ni à utiliser. Nous proposons une nouvelle approche pour en améliorer les deux aspect complémentaires : évolutivité et utilisabilité. Notre réalisation principale est un système de recommandation adaptatif, basé sur trois contributions originales : une modélisation de la configuration d'impression grand format à partir d'un modèle de préférence, sous la forme de problèmes d'optimisation sous contraintes, un modèle des préférences de l'imprimeur, sous la forme de fonctions d'utilité additive linéaires par morceaux, basée sur une famille d'attributs adaptée, un algorithme d'apprentissage automatique d'ordonnancements à partir de données comparatives. Basé sur l'algorithme rankSVM (noyau linéaire), notre méthode d'apprentissage permet d'adapter la complexité de l'espace de description des données, tout en conservant la linéarité