Système d'induction formelle à base de connaissances imprécises
Institution:
Paris 6Disciplines:
Directors:
Abstract EN:
Pas de résumé disponible.
Abstract FR:
Notre thème de recherche traite de l'incertitude et l’imprécision dans les systèmes d'apprentissage symbolique numérique Les ensembles de données qui sont utilisés comme base d'exemples pour les systèmes d'apprentissage classiques (machine learning), sont souvent décrits par des attributs qui ont des valeurs numériques continues. Beaucoup d'algorithmes sont capables de traiter ces types d'attributs sans faire référence aux connaissances du domaine. Dans nos travaux nous utilisons les connaissances du domaine pour améliorer la qualité d'apprentissage. Nous avons principalement travaille sur les attributs qui ont une double description numérique symbolique (discret ordonné). Nous utilisons une interface numérique symbolique basée sur les sous-ensembles flous pour traiter ces données, et nous montrons la façon avec laquelle ces données doivent être exploitées dans des systèmes d'apprentissage classiques. D'autre part, nous avons étudié d'autres types de connaissances du domaine, enrichissant le processus d'apprentissage. Ces connaissances peuvent exprimer, une certaine indifférence entre les décisions, ou des similitudes entre les valeurs des attributs vis a vis des décisions. Notre approche a donné lieu à un système d'apprentissage appelé SAFI (système d'apprentissage flou interactif). Il génère un arbre de décision flou à partir d'un ensemble d'exemples contenant des données floues. Pour construire cet arbre, nous utilisons comme fonction d’évaluation une entropie floue, basée sur les probabilités floues, qui généralise l'entropie classique aux événements flous. Cet arbre de décision peut servir dans le domaine de la commande floue.