thesis

Segmentation bayesienne non supervisee en imagerie radar

Defense date:

Jan. 1, 1993

Edit

Institution:

Rennes 1

Directors:

Abstract EN:

Pas de résumé disponible.

Abstract FR:

Segmentation bayesienne non supervisee en imagerie radar. La these est consacree a la segmentation statistique non supervisee en imagerie radar. L'accent a ete mis sur les methodes locales, qui au contraire des methodes globales ne necessitent pas l'hypothese d'independance des donnees observees conditionnellement a une realisation du terrain. Dans une premiere partie l'influence du contexte spatial sur l'estimation des parametres utilises par le modele d'image hierarchique et sur la segmentation bayesienne des images d'intensites mono-vue et multi-vues a ete etudie. Ensuite nous avons propose une methode d'estimation adaptative de parametres (asem) base sur l'estimateur sem, permettant la segmentation bayesienne des scenes homogenes, non-stationnaires. Les tests effectues sur des images de synthese et reelles ont montre la superiorite de la segmentation bayesienne utilisant les parametres estimes avec l'asem par rapport a la segmentation utilisant les parametres estimes avec le sem, mais aussi, sous certaines conditions, sur des images de synthese stationnaire. Dans une derniere partie l'idee d'une generalisation du modele d'image hierarchique de kelly et derin est proposee permettant l'adaptation de la probabilite marginale de chaque composant du melange aux differentes regions de l'image