thesis

Optimisation sous contraintes par intelligence collective auto-adaptative

Defense date:

Oct. 26, 2010

Edit

Institution:

Lyon 1

Disciplines:

Abstract EN:

In this thesis, we focused on the implementation of self-adaptive algorithms for solving optimization problems modeled in a Constraint Programming (CP) language. We focus on to the Ant Colony Optimization (ACO) algorithms. We have developed three contributions, namely: (1) Integration of ACO algorithms in a constraint programming language for solving constraint satisfaction problems, (2) Proposal of a generic hybrid algorithm which combines ACO and CP approach to solving combinatorial optimization problems (3) Proposal of a strategy to dynamically adjust the parameters of ACO.

Abstract FR:

Dans le cadre de cette thèse, nous nous sommes intéressés à la mise en œuvre d'algorithmes auto-adaptatifs d'Intelligence Collective pour la résolution de problèmes d'optimisation modélisés dans un langage de Programmation par contraintes (PPC). Nous avons porté une attention particulière à la famille d'algorithmes de type « Ant Colony Optimization » (ACO). Nous avons développé trois contributions, à savoir : (1) Intégration des algorithmes de type ACO dans un langage de programmation par contraintes pour la résolution de problèmes de satisfaction de contraintes; (2) Proposition d'un algorithme hybride et générique où ACO est couplé à une approche complète pour résoudre des problèmes d'optimisation combinatoires (3) Proposition d'une stratégie capable d'adapter dynamiquement les paramètres de ACO.