Modelling and simulation of circulating fluidized bed combustors : solid segregation, radiative heat transfer and coal combustion
Institution:
PerpignanDisciplines:
Directors:
Abstract EN:
This dissertation aims to develop an overall mathematical model of circulating fluidized bed (CFB) combustors on up-to-date theories and experimental data of previous research work. Since solid exhibits a wide particle size distribution in a CFB boiler, a hydrodynamic model based on the semi-empirical approach is developed to approximate the local particle size distribution in CFB. The core/annulus flow structure is applied to this model and the particles in the bed are discretized into several size groups. The model accounts for the disintegration and shrinking of coal particles during the combustion process of each group of particles. It shows that coarser particles are gathered near the walls and the average particle diameter decreases along the boiler height, and this trend is more significant in the splash region. A three-dimensional model is developed to predict the bed-to-wall radiative heat transfer coefficient in the upper dilute zone of CFB combustors. The radiative transfer equation is solved by the discrete ordinates method. The Mie scattering theory is applied to calculate the absorption and scattering efficiency factors of particles existing in CFB combustors. The model considers the influences of the particle properties (including particle size distribution, particle optical constants and solid composition) on the radiative heat transfer coefficient. Simulation results show that the particle properties have significant influences on the bed-to-wall radiative heat transfer coefficient in CFB combustors. A coal combustion model is developed combined to the hydrodynamic model and heat transfer model.
Abstract FR:
L'objectif de ce travail est de développer un modèle mathématique global d'une chaudière à lit fluidisé circulant (LFC) à partir des théories les plus récentes et des résultats expérimentaux issus de la bibliographie. Un modèle hydrodynamique basé sur une approche semi-empirique est développé pour estimer localement la distribution de taille de particules dans le LFC. Une structure de flux solide de type cœur/anneau est appliquée dans le modèle, et la population de particules est discrétisée en plusieurs groupes de différentes tailles. Il montre que les particules les plus grosses se regroupent près des parois et que le diamètre moyen décroît avec la hauteur dans la chaudière, et cette tendance est encore plus forte dans la zone de projections. Un modèle à trois dimensions est développé pour calculer le coefficient de transfert de chaleur par rayonnement dans la zone diluée supérieure des chaudières à LFC. L'équation de transfert radiatif est résolue par la méthode des ordonnées discrètes. La théorie de Mie est appliquée pour calculer les efficacités d'absorption et de diffusion des particules présentes dans le LFC. Le modèle traite de l'influence des propriétés des particules (distribution de taille, propriétés optiques, composition des la phase solide) sur le coefficient de transfert de chaleur par rayonnement. Les résultats de la simulation montrent que les propriétés des particules ont une influence importante sur les échanges radiatifs dans les chaudières à LFC. Un modèle de combustion de charbon combiné au modèle hydrodynamique est développé.