thesis

Contrast enhancement in digital imaging using histogram equalization

Defense date:

June 18, 2008

Edit

Institution:

Paris Est

Disciplines:

Directors:

Abstract EN:

Nowadays devices are able to capture and process images from complex surveillance monitoring systems or from simple mobile phones. In certain applications, the time necessary to process the image is not as important as the quality of the processed images (e.g., medical imaging), but in other cases the quality can be sacrificed in favour of time. This thesis focuses on the latter case, and proposes two methodologies for fast image contrast enhancement methods. The proposed methods are based on histogram equalization (HE), and some for handling gray-level images and others for handling color images As far as HE methods for gray-level images are concerned, current methods tend to change the mean brightness of the image to the middle level of the gray-level range. This is not desirable in the case of image contrast enhancement for consumer electronics products, where preserving the input brightness of the image is required to avoid the generation of non-existing artifacts in the output image. To overcome this drawback, Bi-histogram equalization methods for both preserving the brightness and contrast enhancement have been proposed. Although these methods preserve the input brightness on the output image with a significant contrast enhancement, they may produce images which do not look as natural as the ones which have been input. In order to overcome this drawback, we propose a technique called Multi-HE, which consists of decomposing the input image into several sub-images, and then applying the classical HE process to each one of them. This methodology performs a less intensive image contrast enhancement, in a way that the output image presented looks more natural. We propose two discrepancy functions for image decomposition which lead to two new Multi-HE methods. A cost function is also used for automatically deciding in how many sub-images the input image will be decomposed on. Experimental results show that our methods are better in preserving the brightness and producing more natural looking images than the other HE methods. In order to deal with contrast enhancement in color images, we introduce a generic fast hue-preserving histogram equalization method based on the RGB color space, and two instances of the proposed generic method. The first instance uses R-red, G-green, and Bblue 1D histograms to estimate a RGB 3D histogram to be equalized, whereas the second instance uses RG, RB, and GB 2D histograms. Histogram equalization is performed using 7 Abstract 8 shift hue-preserving transformations, avoiding the appearance of unrealistic colors. Our methods have linear time and space complexities with respect to the image dimension, and do not require conversions between color spaces in order to perform image contrast enhancement. Objective assessments comparing our methods and others are performed using a contrast measure and color image quality measures, where the quality is established as a weighed function of the naturalness and colorfulness indexes. This is the first work to evaluate histogram equalization methods with a well-known database of 300 images (one dataset from the University of Berkeley) by using measures such as naturalness and colorfulness. Experimental results show that the value of the image contrast produced by our methods is in average 50% greater than the original image value, and still keeping the quality of the output images close to the original

Abstract FR:

Aujourd’hui, des appareils capables de capter et de traiter les images peuvent être trouvés dans les systèmes complexes de surveillance ou de simples téléphones mobiles. Dans certaines applications, le temps nécessaire au traitement des images n’est pas aussi important que la qualité du traitement (par exemple, l’imagerie médicale). Par contre, dans d’autres cas, la qualité peut être sacrifiée au profit du facteur temps. Cette thèse se concentre sur ce dernier cas, et propose deux types de méthodes rapides pour l’amélioration du contraste d’image. Les méthodes proposées sont fondées sur l’égalisation d’histogramme (EH), et certaines s’adressent à des images en niveaux de gris, tandis que d’autres s’adressent à des images en couleur. En ce qui concerne les méthodes EH pour des images en niveaux de gris, les méthodes actuelles tendent à changer la luminosité moyenne de l’image de départ pour le niveau moyen de l´interval de niveaux de gris. Ce n’est pas souhaitable dans le cas de l’amélioration du contraste d’image pour les produits de l’électronique grand-public, où la préservation de la luminosité de l’image de départ est nécessaire pour éviter la production de distortions dans l’image de sortie. Pour éviter cet inconvénient, des méthodes de Biégalisation d’histogrammes pour préserver la luminosité et l’amélioration du contraste ont été proposées. Bien que ces méthodes préservent la luminosité de l’image de départ tout en améliorant fortement le contraste, elles peuvent produire des images qui ne donnent pas une impression visuelle aussi naturelle que les images de départ. Afin de corriger ce problème, nous proposons une technique appelée multi-EH, qui consiste à décomposer l’image en plusieurs sous-images, et à appliquer le procédé classique de EH à chacune d’entre elles. Bien que produisant une amélioration du contraste moins marquée, cette méthode produit une image de sortie d’une apparence plus naturelle. Nous proposons deux fonctions de décalage par découpage d’histogramme, permettant ainisi de concevoir deux nouvelle méthodes de multi-EH. Une fonction de coût est également utilisé pour déterminer automatiquement en combien de sous-images l’histogramme de l’image d’entrée sera décomposée. Les expériences montrent que nos méthodes sont meilleures pour la préservation de la luminosité et produisent des images plus naturelles que d´autres méthodes de EH. Pour améliorer le contraste dans les images en couleur, nous introduisons une méthode 5 Résumé 6 générique et rapide, qui préserve la teinte. L’égalisation d’histogramme est fondée sur l’espace couleur RGB, et nous proposons deux instantiations de la méthode générique. La première instantiation utilise des histogrammes 1D R-red, G-green, et B-bleu afin d’estimer l’histogramme 3D RGB qui doit être égalisé, alors que le deuxième instantiation utilise des histogrammes 2D RG, RB, et GB. L’égalisation d’histogramme est effectué en utilisant des transformations de décalage qui préservent la teinte, en évitant l’apparition de couleurs irréalistes. Nos méthodes ont des complexités de temps et d’espace linéaire, par rapport à la taille de l’image, et n’ont pas besoin de faire la conversion d’un espace couleur à l’autre afin de réaliser l’amélioration du contraste de l’image. Des évaluations objectives comparant nos méthodes et d’autres ont été effectuées au moyen d’une mesure de contraste et de couleur afin de mesurer la qualité de l’image, où la qualité est établie comme une fonction pondérée d’un indice de “naturalité” et d’un indice de couleur. Nous analysons 300 images extraites d’une base de données de l’Université de Berkeley. Les expériences ont montré que la valeur de contraste de l’image produite par nos méthodes est en moyenne de 50% supérieure à la valeur de contraste de l’image original, tout en conservant une qualité des images produites proche de celle des images originales