Combinatoire et calcul symbolique en théorie des représentations
Institution:
RouenDisciplines:
Directors:
Abstract EN:
Pas de résumé disponible.
Abstract FR:
Ce mémoire concerne le traitement algorithmique des représentations matricielles. Les techniques y sont illustrées sur deux exemples, les algèbres de Hecke et les automates à multiplicités. Les algèbres de Hecke interviennent dans plusieurs domaines (dont l'algèbre ou la physique statistique) qui demandent de pouvoir y calculer efficacement. Ici sont rassemblés des algorithmes implémentés en Maple constituant la bibliothèque SHRI. Par l'action d'opérateurs de symétrisation sur des Q-Vandermonde, on détermine un système complet de représentations polynomiales. En calculant les polynômes minimaux de chaque bloc de la représentation régulière, on en déduit l'inverse d'un élément s'il existe. On construit une famille complète d'idempotents minimaux orthogonaux en évaluant les gz-polynômes en les q-analogues des éléments de Jucys-Murphy. Ces polynômes sont de degré minimal en la variable d'index maximal (la plus coûteuse). On en déduit un calcul des bases de Gelfand-Zetlin des modules irréductibles. Le caractère d'un élément de l'algèbre de Hecke est, grâce à un algorithme de conjugaison, une combinaison linéaire d'évaluations sur des produits de cycles calculées efficacement par une formule de J. Desarmenien généralisant la formule de Murnaghan-Nakayama. Une forme bilinéaire invariante permet d'expliciter les idempotents centraux via la formule de Kilmoyer. Le phénomène de compression spectrale observé lors de tests sur le package réside en la compression des deux paramètres formels de l'algèbre de Hecke générique en un seul par l'implémentation des isomorphismes semi-linéaires entre les algèbres de Hecke. Les calculs dans l'algèbre de Hecke générique sont alors plus efficaces. Dans une dernière partie, on établit, pour le cas non-commutatif, l'algorithme classique de minimisation des représentations linéaires des séries rationnelles dû à M. P. Schutzenberger. On montre comment calculer les isomorphismes d'automates minimaux.