A study on an integrated 4-Switch Buck-Boost DC-DC converter with high efficiency for portable applications
Institution:
LyonDisciplines:
Directors:
Abstract EN:
The increase in the performances of the portable devices calls for an energy conversion from the battery that is the most efficient as possible in order to make the devices last as long as possible. The downstream circuits need a steady voltage supply which can vary for each one of them from 1.0 V to 5.5 V from an input voltage varying between 2.5 V and 5 V. A 4-Switch Buck-Boost (4SBB) DC-DC converter appears to be the solution which can perform step-up and step-down voltage perations and get the best trade-off between fficiency, dynamic performances and costs (in terms of Silicium and Board area). ON Semiconductor has developed and taped out in CMOS 0.25 µm (ON Semiconductor process) a 4SBB converter which serves as the case study of the thesis. The converter operates in multiple modes (namely Buck mode, Boost mode and Buck-Boost mode) due to fixed frequency operations. The Buck-Boost mode is the main topic dealt with in the thesis. The Buck-Boost mode, also called "transition mode", can be implemented using several possible Sequences of Topologies (SoT). Three SoTs are compared in terms of efficiency among which the one implemented in the converter. Then the dynamical performances of the converter are studied for the different modes of operations by deriving the analytical expressions of the relevant transfer functions. The models derived in Matlab and Mathcad to evaluate efficiency and dynamical performances are then used to develop a tool to get a rapid sizing of the converter’s control loop components. From this step, the stability of the converter is analyzed using Floquet’s theory and Sampled-Data modeling enabling the building of a design methodology to design such a converter. Finally, to enhance efficiency in Buck-Boost mode whatever the working conditions, an algorithm controlling the hysteresis value of the control loop’s comparator has been developed in Verilog, simulated in CADENCE and implemented in FPGA. This algorithm can improve efficiency by almost 3% in Buck-Boost mode compared to its default setting.
Abstract FR:
L’augmentation des performances des produits portables requièrent une exploitation la plus efficace possible de la batterie afin de permettre à ces produits d’être utilisés le plus longtemps possible avant d’être rechargés. Les circuits en aval ont besoin d’une source de tension stable qui peut varier pour chacun d’entre eux entre 1.0 V et 5.5 V à partir d’une tension d’entrée pouvant varier entre 2.5V et 5V. Un convertisseur DC-DC à 4 interrupteurs de type dévolteur-survolteur apparait comme une solution intéressante permettant des opérations de diminutions et d’augmentations de tension d’une part, et d’autres part le meilleur compromis entre rendement, performances dynamiques et coûts (en termes de place occupée sur le Silicium et sur la carte). ON Semiconductor a développé et produit un prototype en technologie CMOS 0.25 µm (procédé propriétaire) d’un tel convertisseur qui sert d’étude de cas pour la thèse. Le convertisseur opère selon plusieurs modes de fonctionnement (mode dévolteur, mode survolteur et mode dévolteur-survolteur) à cause d’un impératif de fonctionnement en fréquence de commutation fixe. Le mode dévolteur-survolteur est le sujet principal traité dans la thèse. Le mode dévolteur-survolteur, aussi appelé mode de transition, peut être implémenté via plusieurs Séquences de Topologie (SdT) possibles. Trois SdTs sont comparées en termes de rendement parmi lesquelles figure la SdT implémentée par le prototype. Les performances dynamiques du convertisseur dans ses différents mode de fonctionnement sont ensuite étudiées en dérivant les expressions analytiques des fonctions de transfert qui les caractérisent. Les modèles dérivés dans Matlab et Mathcad pour évaluer le rendement et les performances dynamiques du convertisseur sont ensuite utilisés pour développer un outil servant à obtenir un dimensionnement rapide de la boucle de contrôle du convertisseur. À partir de cette étape, la stabilité du convertisseur dans ses différents modes de fonctionnement est analysée en utilisant la théorie de Floquet et un modèle échantillonné-linéarisé du convertisseur permettant l’établissement d’une méthodologie de conception d’un tel convertisseur. Enfin, pour améliorer le rendement en mode de transition pour tous les points de fonctionnement, un algorithme contrôlant la valeur de l’hystérésis du comparateur utilisé dans la boucle de contrôle a été développé en Verilog, simulé dans l’environnement CADENCE et implémenté en FPGA. Cet algorithme peut améliorer le rendement de près de 3% en mode de transition comparé au réglage initial de la valeur d’hystérésis.