thesis

Système multi-sources de production d'énergie électrique : méthode de dimensionnement d'un système hybride et mise en œuvre expérimentale de l'optimisation de la gestion d'énergie

Defense date:

Jan. 1, 2010

Edit

Institution:

Le Havre

Disciplines:

Directors:

Abstract EN:

This work is funded by the "Region Haute Normandie", the University of Le Havre and the GREAH laboratory, within the scope of research activities developed in the decades by GREAH laboratory on integration of renewable energy sources in systems of power generation and energy storage. The hybrid system considered consists of a wind generator, a diesel generator, photovoltaic panels, ultracapacitors and lead acid batteries for supplying the autonomous site (consumers). The wind power generator and photovoltaic panels are regulated at their maximum power to increase the penetration ratio of the renewable energy. The wind power fluctuations are dispatched between ultracapacitors and batteries according to the dynamics of each source. The using of ultracapacitors reduces the number of the battery cycles of charges and discharges, thereby improving its life and reduces its size. Because of the battery is the weak link of the system, we introduce a method to estimate its lifetime. The diesel generator is interfaced with the power electronics in aims to regulate the DC-bus voltage while compensating the difference between the load demand and the average value of the wind power. Fluctuations induced by the wind power generator are being absorbed by the storage devices. The diesel generator compensates only low frequencies energy compatible with its dynamics. This method can improve the performance of the diesel engine and can reduce the fuel consumption. The control laws of power converters and the energy transfer management methods are developed from a study of the technological characteristics of different components of the system. The modelling and sizing of the physical system is conducted in aim to perform the experimental implementation. The power electronic converters and the acquiring system (and measuring) are realised in the laboratory. During the experiments, different sources are inserted into the system in an evolutionary way to highlight the constraints and interactions introduced by each interconnected source. This also allows us to develop solutions tailored to each situation and to continue the experiments efficiently. Indeed, the insertion of a new source generally disrupts the stability of the system and often requires a readjustment of the parameters of the overall system regulation. Analyses of experimental results show the effectiveness of the strategy proposed for the energy management and the control of power converters.

Abstract FR:

Ces travaux de thèse, financés par la Région Haute Normandie à travers l'Université du Havre et le laboratoire GREAH, rentrent dans le cadre des activités de recherches développées au laboratoire GREAH depuis plusieurs décennies en matière d'intégration des sources d'énergies renouvelables dans les systèmes de production électrique et de stockage d'énergie. Le système hybride étudié est constitué d'une éolienne, d'un générateur diesel, de panneaux photovoltaïques, d'un banc de supercondensateurs et d'un banc de batteries acide-plomb le tout alimentant un site insulaire donné (consommateurs). L'éolienne et les panneaux photovoltaïques sont régulés à leur puissance maximale afin d'augmenter la part des énergies renouvelables. Les fluctuations de l'énergie éolienne sont reparties entre les supercondensateurs et les batteries selon la dynamique de chaque source. La présence des supercondensateurs réduit le nombre des cycles de charges et de décharges de la batterie, améliorant ainsi sa durée de vie tout en réduisant sa taille. En effet, les batteries constituent le maillon faible du système hybride. Pour cela, nous proposons une méthode d'estimation de sa durée de vie. Le générateur diesel est interfacé par des convertisseurs d'électronique de puissance afin de réguler la tension du bus continu tout en compensant le déficit d'énergie. Les fluctuations induites par le courant éolien étant absorbées par les sources de stockage, le générateur diesel compense uniquement les puissances de basses fréquences compatibles avec sa dynamique. Ceci améliore les performances du moteur diesel, réduit la consommation en fuel et les coûts de maintenance tout en augmentant sa durée de vie. Les lois de contrôle des convertisseurs et de gestion du transfert de l'énergie sont élaborées à partir d'une étude des caractéristiques technologiques des différents constituants du système. Une modélisation et un dimensionnement du système physique nous permet de mieux organiser la mise en œuvre expérimentale et la réalisation des convertisseurs d'électronique de puissance avec leurs dispositifs d'acquisition et de commande. Au cours des expérimentations, les différentes sources sont insérées dans le système de manière évolutive afin de mettre en évidence les contraintes et les interactions introduites par chaque source interconnectée. Ceci nous permet aussi de développer les solutions adaptées à chaque situation afin de continuer les expérimentations de manière efficiente. En effet, l'insertion d'une nouvelle source perturbe généralement la stabilité du système et nécessite souvent un réajustement des paramètres des régulateurs du système global. Les analyses des résultats expérimentaux mettent en évidence l'efficacité de la stratégie proposée pour la gestion de l'énergie et le contrôle des convertisseurs.