Moisture in buildings air-envelope interaction
Institution:
Lyon, INSADisciplines:
Directors:
Abstract EN:
The aim of this thesis was to study the mass exchange between indoor air and material. The influence of several factors on moisture transfer has been verified. Also the convective mass transfer dependency on the relative humidity condition and position of the material has been checked. Finally, a new module with the sorption hysteresis model, Humi-mur, for calculations of mass flow exchanged between indoor air and material has been developed, validated and integrated into the whole building simulation tool TRNSYS. This powerful tool was used to simulate a realistic room under real climatic conditions. The tests on mass uptake have shown that the rate of mass uptake depends not only on the material and coatings but also, some relationships between mass flux and air movement and temperature have been found. The experiment on water evaporation from a free liquid surface showed that the convective mass transfer coefficient depends on the driving potential value. It was presented that for the smaller difference in the relative humidity the transport coefficient is smaller. The measurements of the convective mass transfer coefficient from a thin hygroscopic material showed that the value of the coefficient depends not only on the difference in the driving potential but also on the level of the driving potential. For the same difference the convective transport coefficient has lower values for a lower level of relative humidity. It was also shown that the convective mass transfer coefficient has lower values for samples in a vertical position than in a horizontal position. Finally, the practical use of the Humi-mur model has been presented. The results show that moisture buffering materials can improve perceived indoor air quality and prevent microbiological growth at the surface of the building envelope. It was also pointed out that neglecting the effect of sorption hysteresis on moisture flux can lead to errors in calculations.
Abstract FR:
L'humidité relative de l'air est un des paramètres les plus importants ayant une influence sur le confort, la qualité de l'air intérieur et aussi sur la performance énergétique et la durabilité des enveloppes. Les matériaux qui adsorbent et désorbent l’humidité peuvent être utilisés pour modérer l’amplitude des variations de l’humidité relative et ainsi améliorer le climat intérieur et diminuer les consommations énergétiques. Le transfert de masse dans les matériaux hygroscopiques, même si il est pris dans les simulations dynamiques des bâtiments, il est simplifié. Négliger le transport de vapeur d'eau entre l'air et le matériel, ou appliquer des simplifications peut entraîner de graves erreurs dans l'estimation de l'humidité de l'air. L’objectif de ce travail de thèse est d’examiner les paramètres influençant l’échange hygrique entre l’air intérieur et les matériaux de construction dans des conditions normales d’utilisation. Ce travail a été divisé en deux parties : expérimentale et numérique. Comme les propriétés hygrique des matériaux ont un impact important sur les transferts de masse, des mesures détaillées de la perméabilité à la vapeur et de l’isotherme de sorption ont été effectué. Aussi les coefficients convectifs de transfert de masse ont été mesurés. Le critère d’absorption de masse a montré que le taux de celui-ci ne dépend pas seulement du matériel et des revêtements, mais aussi de la température et le mouvement d’air intérieure. L’expérimentation sur l’évaporation de l’eau sur la surface libre d’un liquide a montré que le coefficient convectif de transfert de masse dépend du potentiel de transfert. Il a été présenté que pour les petites différences dans le taux d'humidité relative, le coefficient de transport est plus petit. Les mesures du coefficient convectif de transfert de masse à partir d'un matériau mince hygroscopique ont montré que la valeur du coefficient ne dépend pas seulement de la différence dans le potentiel de transfert, mais aussi du niveau de potentiel. Pour la même différence, les coefficients convectifs de transfert ont des valeurs inférieures pour des faibles niveaux d'humidité relative. Il a également été montré que le coefficient convectif de transfert de masse a des valeurs inférieures pour les échantillons en position verticale que dans la position horizontale. Dans la dernière partie de cette thèse, un nouveau modèle numérique Humi-mur, pour les simulations du flux massique échangé entre l’air et le matériau a été développé et présenté. Le modèle permet une représentation précise des propriétés hygriques : la perméabilité à la vapeur d’eau et l’isotherme de sorption. L’aspect pratique du modèle l'Humi-mur a été présenté. Les résultats montrent que le tampon d'humidité dans les matériaux peut améliorer la perception de la qualité de l'air et empêcher la croissance microbiologique à la surface de l'enveloppe du bâtiment. Il a également été souligné que négliger les effets d'hystérésis de sorption sur les flux d'humidité peut entraîner de graves erreurs dans les calculs.