thesis

Classification multi-vues d'un objet immergé à partir d'images sonar et de son ombre portée sur le fond

Defense date:

Jan. 1, 2001

Edit

Institution:

Brest

Disciplines:

Authors:

Abstract EN:

Pas de résumé disponible.

Abstract FR:

La classification sur ombre de mines sous-marines peut être effectuée à partir d'images sonar haute résolution. Cependant, la classification mono-vue admet des limites du fait de leur forme géométrique parfois complexe. Une manière de s'affranchir des ambigui͏̈tés consiste à effectuer une classification multi-vues. Dans un premier temps, il convient d'assimiler les spécificités de l'imagerie sonar. D'un côté, les propriétés statistiques des pixels et le principe d'acquisition des images sont des connaissances avantageusement prises en compte lors de l'étape de segmentation. D'un autre côté, les distorsions géométriques qui affectent l'ombre portée du fait des performances du sonar et de la prise de vue doivent être considérées. En matière de reconnaissance de formes, les données sonar segmentées peuvent être diversement résumées suivant qu'on s'attache à définir des grandeurs indépendantes des positions relatives objet-sonar et/ou de la résolution du sonar ou bien, autorisant une reconstruction du contour et la conservation de l'orientation de la forme associée. Ces diverses considérations du problème mono-vue ont préparé l'élaboration de processus plus complexes de classification multi-vues. D'une part, on manipule les attributs issus d'un traitement image par image. Deux cas se présentent : par utilisation des déformations de l'ombre au cours de la trajectoire du sonar ou, au contraire, en s'en affranchissant. Dans le premier cas, on caractérise de manière globale l'ensemble des valeurs successives prises par des attributs sensibles aux déformations de l'ombre. Dans le second cas, sans connaissance précise des conditions d'acquisition, les attributs extraits sont fusionnés et présentés à l'opérateur sous forme de mesures pour l'aide à la décision. Par la logique floue d'autre part, les outils de reconnaissance de formes calculés sur des données binaires ont été étendus au cas de données en niveaux de gris pour la caractérisation d'une nouvelle image multi-vues.