thesis

Etude des carbones durs issus de la biomasse pour l’application dans les batteries Sodium-ion

Defense date:

Dec. 14, 2020

Edit

Disciplines:

Abstract EN:

The ever-increasing demand for Lithium-ion batteries has raised some concern regarding the supply of the critical raw materials needed for their production, especially the Li, Co, Ni and Cu resources. The Sodium-ion technology appears to be an alternative which potentially uses abundant, and evenly distributed resources, that is able to reduce the cost of the batteries compared to Lithium-ion. However, the commercial intrusion of Sodium-ion batteries is still limited by the development of low-cost and high-performance negative electrode material. The most promising option is a disordered carbonaceous material called hard carbon obtained from high-temperature thermal treatment of organic precursors. Despite its good performance, hard carbon is still more expensive than the graphite used in Lithium-ion batteries, given the high cost of the synthetic precursors. Lignocellulosic biomass has recently attracted attention as a hard carbon precursor, given its renewable nature, accessibility, and low cost. However, the high variability of biomass feedstock, together with the poor yield of the pyrolysis reaction, make their commercial application rather difficult. Moreover, there is no clear understanding of the biomass composition role on the hard carbon properties. The research work presented here is an interdisciplinary approach, aiming to elucidate the biomass composition's impact on the physicochemical and electrochemical properties of the derived hard carbons as well as their synthesis yield. A set of 25 lignocellulosic biomass precursors have been selected for this study. The composition of each biomass precursor, such as the elemental organic and inorganic content, and the macromolecular contents were evaluated in detail. The synthesised hard carbons were characterised by XRD, Raman, SEM, TEM, SAXS, XPS, and galvanostatic cycling techniques. The inorganic content and composition of the precursor, particularly the presence of Si, Ca, and K compounds, was observed to play a critical role in developing the hard carbon structure and surface. Therefore, they have a strong negative impact on hard carbon performances, producing high irreversibility. Because of their low ash-content, coupled with their low cost and environmental impact, precursors such as forestry residues, and some agricultural residues, appeared to be the best compromise for hard carbon application.

Abstract FR:

La demande croissante en batteries Lithium-ion a suscité une certaine inquiétude concernant l'approvisionnement en matières premières critiques nécessaires à leur production, en particulier les ressources en Li, Co, Ni et Cu. La technologie Sodium-ion apparait comme une alternative pouvant utiliser des ressources abondantes et uniformément réparties, et qui pourrait réduire le coût des batteries par rapport au Lithium-ion. Toutefois, le débouché commercial des batteries Sodium-ion est encore limité par le développement de matériaux d'électrode négative à haute performance et bas coût. L'option la plus prometteuse est un matériau carboné désordonné appelé carbone dur, obtenu par traitement thermique à haute température de précurseurs organiques. Malgré ses bonnes performances, le carbone dur est toujours plus cher que le graphite utilisé dans les batteries Lithium-ion, étant donné le coût élevé de ses précurseurs synthétiques. La biomasse lignocellulosique a récemment attiré l'attention en tant que précurseur du carbone dur, étant donné sa nature renouvelable, son accessibilité et son faible coût. Cependant, la grande variabilité des matières premières de la biomasse ainsi que le faible rendement de la réaction de pyrolyse, rendent leur application commerciale plutôt difficile. De plus, le rôle de la composition de la biomasse sur les propriétés du carbone dur n’est pas complètement compris. Le travail de recherche présenté ici est une approche interdisciplinaire, visant à élucider l'impact de la composition de la biomasse sur les propriétés physico-chimiques et électrochimiques des carbones durs résultants ainsi que le rendement de leur synthèse. Un ensemble de 25 précurseurs ont été sélectionnés pour cette étude. La composition de chaque précurseur, telles que le contenu organique et inorganique élémentaire, et le contenu macromoléculaire, ont été évaluées. Les carbones durs synthétisés ont été caractérisés par des techniques de XRD, Raman, SEM, TEM, SAXS, XPS et de cyclage galvanostatique. Le contenu et la composition inorganique du précurseur, en particulier la présence de composés de Si, Ca et K, ont semblé jouer un rôle essentiel dans le développement de la structure et de la surface du carbone dur. Par conséquent, ils ont un impact négatif important sur les performances du carbone dur, en produisant des irréversibilités élevées. Compte tenu de leur faible teneur en cendres couplé à leur faible cout et leur faible impact environnemental, les résidus forestiers et certain résidus agricoles, semblent être le meilleur compromis pour l'application du carbone dur.