thesis

Simulations à l'échelle mésoscopique du comportement en fatigue de métaux CFC

Defense date:

Oct. 8, 2020

Edit

Disciplines:

Authors:

Abstract EN:

Fatigue is one of the main failure mechanism for metallic components. The early stages of fatigue refer to the period before the initiation and propagation of fatigue cracks, and accounts for up to 90% of fatigue life. Therefore, the understanding of fatigue damage mechanisms at the early stages is a key issue to improve the operational lifetime of components. Experimental studies have shed light on the importance of the Persistent Slip Band (PSB) as the sites of plasticity localization and subsequent initiation of cracks. The purpose of this thesis is to contribute to the understanding of the formation of fatigue microstructure at the scale of dislocations using 3D Discrete Dislocation Dynamics (DDD). First, simulations of single slip on Cu single crystal are realized. The formation process of the dislocation related microstructures inside PSBs and the surface roughness evolution are elucidated. Under a large strain (> 10−3), a transformation process of the homogeneously distributed dislocations into the organized PSBs is observed, which can be well explained from the diminution of the shear stress on the cross-slip plane. The stability of the numerical PSB is verified with a decreasing loading and is found to be comparable to experimental results. Besides, the comparison between Cu and AISI 316L austenitic stainless steel confirms the importance of cross-slip probability to the distribution and number of PSBs. Simulations of different double slip combinations are also realized to identify the effect of dislocation interactions on cyclic behavior. In the end, the preliminary cyclic simulations for bi-crystals and aggregates are launched with a newly developed DDD code for poly-crystals.

Abstract FR:

La fatigue est l'une des principaux mécanismes de défaillance des composants métalliques. les stades précurseurs de l'endommagement par fatigue concernent la période avant l'initiation et la propagation des fissures de fatigue et représente jusqu'à 90 % de la durée de vie en fatigue. De fait, la compréhension des mécanismes de l'endommagement par fatigue aux stades précurseurs est un enjeu clé pour am´eliorer la durée de vie opérationnelle des composants. Des études expérimentales ont montré l'importance des Bandes de Glissement Intensif (BGIs) en tant que sites de localisation de la plasticité et d'amorçage des fissures. Le but de cette thèse est de contribuer à la compréhension de la formation de microstructure de fatigue à l'échelle des dislocations avec l'aide de la dynamique de dislocations discrètes en 3D (DDD). Tout d'abord, des simulations de glissement simple sur monocristal de Cu sont réalisées. Le processus de formation des microstructures liées à l'organisation des dislocations à l'intérieur des PSB et l'évolution de la rugosité développée en surface sont élucidés. Pour un chargement de fatigue en cisaillement simple sous une amplitude de déformation imposée importante (>0.001), on observe une réorganisation progressive des dislocations dont la répartition initialement homogène dans le grain se transforme en des microstructures organisées en BGIs. Le processus est expliqué à partir de calculs des contraintes internes sur le système dévié. La stabilité des BGIs simulées est vérifiée en diminuant subitement l'amplitude du chargement après les avoir construites. Les simulations se comparent bien avec les observations expérimentales de la littérature. En outre, la comparaison entre Cu et l'acier inoxydable austénitique 316L confirme l'importance de la probabilité de glissement dévié pour la distribution et le nombre de BGIs. Des simulations de différentes combinaisons de glissements doubles sont également réalisées pour identifier l'effet des interactions de dislocations sur le comportement cyclique. Finalement, dessimulations cycliques de bi-cristaux et d'agrégats polycristallins sont réalisées grâce au nouveau code DDD dédié aux poly-cristaux.