thesis

Mise au point d'un réacteur de synthèse en milieu CO2 supercritique : étude de l'hydrogénation catalytique de constituants organiques

Defense date:

Jan. 1, 2008

Edit

Institution:

Pau

Disciplines:

Authors:

Directors:

Abstract EN:

Catalytic hydrogenation is one of the process keys in the chemical industry. The performances of hydrogenation and the distribution of its products are strongly influenced, by the activity, the selectivity and the interactions between the kinetic reactions and the transfer of matter. The catalytic hydrogenations are usually made in triphasic medium formed by liquid, gas and a solid catalyst. Thus, the transfer of matter between the interfaces can limit reaction kinetics. Then, supercritical CO2 offers a particularly interesting reactional medium, which can attenuate or remove some of these limitations. It constitutes a monophasic fluid allowing a good matter transfer, and having simultaneously a solvent capacity adjustable according temperature and pressure, a very good transport properties, and an easily separation solvent/reaction product by returning to the atmospheric pressure (contrary to organic solvents which generally require an additional treatment). A bibliographical study shows that the implementation of a chemical reaction in supercritical medium constitutes a very interesting field innovating. For the reason, we conceived and developed a new pilot allowing the study of synthesis reactions in supercritical medium. This pilot equipped with an agitated engine, feeds by tree distinct lines. During our work we studied two hydrogenation reactions in supercritical CO2 : hydrogenation of but-2-yne-1,4-diol and limonene. In the first reaction, we note that hydrogenation of but-2-yne-1,4-diol in supercritical medium is about 3 to 4 times faster than in organic solvent (biphasic medium). Moreover, no secondary product was detected during the study. On the other hand, the second reaction was studied in gas/liquid medium very close to the supercritical field and the study show a fast kinetics. In more, these new reaction conditions make it possible to work with high concentrations; what is very interesting for the industry.

Abstract FR:

L’hydrogénation catalytique est l'un des procédés clés dans l'industrie de la chimie fine et l'industrie pharmaceutique. Les performances de l'hydrogénation et la distribution de ses produits sont fortement influencées, par l'activité et la sélectivité de catalyseur et, également, par les interactions entre la cinétique chimiques et le transfert de matière. Les réactions catalytiques d'hydrogénation se font habituellement dans un milieu triphasique constitué par une phase liquide riche en composé organique à hydrogéner, une phase gazeuse riche en hydrogène, ces deux réactifs se retrouvant à la surface d'un catalyseur solide. Ainsi, la cinétique de réaction d'hydrogénation peut être limitée par le transfert de matière aux interfaces. Le CO2 supercritique offre alors un milieu réactionnel particulièrement intéressant qui peut atténuer ou supprimer certaines de ces limitations. Il constitue en effet un milieu fluide monophasique permettant un bon transfert de matière, et ayant simultanément un pouvoir solvant ajustable en fonction de la température et de la pression, de très bonnes propriétés de transport, et une séparation solvant /produit de réaction par simple retour à la pression atmosphérique (contrairement aux solvants organiques qui nécessitent généralement un traitement supplémentaire). Une étude bibliographique nous a clairement montré que la mise en oeuvre d’une réaction chimique en milieu supercritique constitue un domaine innovant très intéressant. C'est la raison pour laquelle nous avons conçu et développé un nouveau pilote permettant l’étude de réactions de synthèse en milieu fluide supercritique. Ce pilote est équipé d’un réacteur bien agité alimenté par trois lignes distinctes. Au cours de nos travaux nous avons étudié deux réactions d'hydrogénation en milieu CO2 supercritique : l'hydrogénation du but-2-yne-1,4-diol et celle du limonène. Dans le premier cas, nous avons constaté que l'hydrogénation du but-2-yne-1,4-diol en milieu fluide supercritique est 3 à 4 fois plus rapide que celle étudiée en présence d'un solvant organique. En plus, aucun produit secondaire n'a été détecté au cours de notre étude. En revanche la seconde réaction a été étudiée dans milieu liquide/vapeur très proche du domaine supercritique et l’étude effectuée monte une cinétique rapide en plus ces nouvelles conditions de travail permettent de travailler à des fortes concentrations ; ce qui est intéressant pour industrielle.