Segmentation statistique non supervisee d'images et detection de contours par filtrage
Institution:
CompiègneDisciplines:
Directors:
Abstract EN:
Pas de résumé disponible.
Abstract FR:
Cette thèse est consacrée à deux catégories de méthodes de la segmentation d'images: la segmentation statistique non supervisée et la détection de contours par filtrage. Les contributions de ce travail reposent sur les études des deux familles de méthodes en soi et sur leur mise en parallèle. Dans la première partie, nous abordons la segmentation Bayesienne non supervisée. Des algorithmes d'estimation préalable à la segmentation contextuelle, tels que EM, ICE, SEM, sont étudiés. Puis ces estimateurs valables dans les champs stationnaires sont adaptés aux champs non stationnaires. En levant l'hypothèse de stationnarité pour le champ de classes, les segmentations contextuelles donnent des résultats nettement meilleurs dans certains cas. Après une application de diverses combinaisons des estimateurs et des segmentations à des images différemment bruitées, nous menons une comparaison des performances des estimateurs suivant des caractéristiques du bruit. Une étude de la robustesse de la segmentation contextuelle est effectuée, ce qui est utile pour le choix d'un estimateur, ainsi que pour la définition d'un compromis entre la précision de l'estimation et le temps de calcul. La deuxième partie est consacrée à la détection de contours par filtrage. Une définition des contours utilisant l'ordre de discontinuité est d'abord proposée. La méthodologie de la détection de contours d'ordre 0 (contour échelon) est généralisée aux contours de discontinuité d'ordre quelconque. Le problème de la détection de contours est ainsi réduit à la recherche d'un filtre de lissage optimal dont la forme joue un rôle important. L'accent est donc mis sur l'étude des formes de filtres de lissage existants. Un exemple de cette généralisation, la détection du contour rampe, est appliquée aux images simulées et images réelles. La troisième partie est consacrée à la mise en parallèle des deux familles de méthodes. Après une étude sur leurs profils différents et points communs du point de vue théorique, l'objectif principal est la comparaison de la qualité, tant visuelle que selon des critères objectifs, des contours obtenus par deux familles de méthodes. Les comparaisons sont effectuées également au sein d'une même famille. Des algorithmes d'estimation, ICE stationnaire et ICE non stationnaire, combinés avec les méthodes de segmentation, telles que aveugle et contextuelle, sont choisis comme représentants de la première famille. Le filtre de Shen est choisi comme représentant de la deuxième famille. Cette étude met en lumière les différences de comportement des deux familles de méthodes, et peut ainsi servir à la décision quant au choix de la méthode la plus appropriée en fonction de propriétés objectives des images.